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Appendix:  Equations Used for Fitting ITC Data 

I.  General Considerations 

It will be assumed throughout that the macromolecule M is in the cell at an initial bulk concentration o
tM  

(moles/liter) before the first injection, and the ligand X to be injected is initially at zero concentration in the 
cell.  The working volume (cross-hatched area below) of the lollipop-shaped cell is Vo, the size of the ith 
injection is ΔVi and the total liquid which has been injected at any point during the experiment, ΔV, is 
simply the sum of the individual ΔVi for all injections. 
 
 
 
 
 

 
 
 
 
 
 
 
At the beginning of an experiment, both the cell and the long communication tube are filled with 
macromolecule solution, but it is only that contained within Vo  that is sensed calorimetricallly,  Because of 
the total-fill nature of the cell each injection acts to drive liquid out of the working volume and up into the 
inactive tube as shown by the darkened portion representing ΔV.   Thus, the concentration of 
macromolecule in V  changes a small amount with each injection since the total number of moles of 
macromolecule initially in V  (i.e. o

tM  times Vo) at the beginning of the experiment is later distributed in a 
larger volume, Vo + ΔV.  Since the average bulk concentration of macromolecule in ΔV is the mean of the 
beginning concentration Mt

o  and the present concentration Mt in the active volume, then conservation of 
mass requires that 
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Using similar reasoning, it is easily shown that the actual bulk concentration of ligand in Vo, Xt, is related 
to the hypothetical bulk concentration X t

o  (assuming that all of the injected ligand remained in Vo) as 
follows: 
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The above expressions for Mt and Xt are used by Origin to correct for displaced volume effects which occur 
with each injection. 

II.  Single Set of Identical Sites 

 
In the following equations, 

K = Binding constant; 
n = # of sites; 
Vo = active cell volume; 
Mt and [M] are bulk and free concentration of macromolecule in Vo; 
Xt and [X] are bulk and free concentration of ligand, and 
Θ  = fraction of sites occupied by ligand X. 
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Combining equations (5) and (6) above gives 
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The total heat content Q of the solution contained in Vo (determined relative to zero for the unliganded 
species) at fractional saturation Θ  is 

   Q n M HVt o= Θ Δ      (8) 

where ΔH is the molar heat of ligand binding.  Solving the quadratic equation (7) for Θ  and then 
substituting this into eq. (8) gives 
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The value of Q above can be calculated (for any designated values of n, K, and ΔH) at the end of the ith 
injection and designated Q(i).  The parameter of interest for comparison with experiment, however, is the 
change in heat content from the completion of the i-1 injection to completion of the i injection.  The 
expression for Q in eq. (9) only applies to the liquid contained in volume Vo.  Therefore, after completing 
an injection, it is obvious that a correction must be made for displaced volume (i.e., ΔVi = injection 
volume) since some of the liquid in Vo after the i-1 injection will no longer be in Vo after the ith injection, 
even though  it will contribute to the heat effect (assuming the kinetics of reaction and mixing are fast) 
before it passes out of the working volume Vo.  The liquid in the displaced volume contributes about 50% 
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as much heat effect as an equivalent volume remaining in Vo1 The correct expression then for heat released, 

ΔQ(i), from the ith injection is 
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The process of fitting experimental data then involves 1) initial guesses (which most often can be made 
accurately enough by Origin) of n, K, and ΔH; 2) calculation of ΔQ(i) for each injection and comparison of 
these values with the measured heat for the corresponding experimental injection;  3) improvement in the 
initial values of n, K, and ΔH by standard Marquardt methods; and 4) iteration of the above procedure until 
no further significant improvement in fit occurs with continued iteration. 

 

III.  Two Sets of Independent Sites 

 
Using the same definition of symbols as above for set 1 and set 2, we have 
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Solving equation (11) for Θ 1 and Θ 2 and then substituting into equation (12) gives 
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Clearing equation (13) of fractions and collecting like terms leads to a cubic equation of the form 

   [ ] [ ] [ ]X p X q X r3 2 0+ + + =     (14) 
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1 The first infinitesimal volume element in the i injection contributes no heat effect since it has already 
equilibrated at existing concentrations after the i-1 injection.  The last volume element of an injection 
contributes heat effects equal to the liquid remaining in Vo since its concentrations are equivalent to those 
in Vo  after the i injection.  Assuming linearity over the small ΔVi  volume increment, then the liquid in the 
displaced volume is only half as effective in producing heat relative to the liquid in Vo). 
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Equations 14 and 15 can be solved for [X] either in closed form or (as done in Origin) numerically by using 
Newton’s Method if parameters n1, n2, K1, and K2 are assigned.  Both Θ1 and Θ2 may then be obtained from 
equation 11 above. 

 

As discussed earlier in section II, the heat content after any injection i is equal to 
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After a similar correction for displaced volume, the pertinent calculated heat effect for the i injection is 
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which may be used in the Marquardt algorithm to obtain best values for the six fitting parameters.  

IV.  Sequential Binding Sites 

 

For sequential binding, the binding constants K1, K2, .....Kn must be defined relative to the progress of 
saturation, so that 
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In the sequential model, there is no distinction as to which sites are saturated, but only as to the total 
number of sites that are saturated.  If the sites are identical, then there is a statistical degeneracy associated 
with the sequential saturation since the first ligand to bind has more empty sites of the same kind to choose 
from than does the second ligand, etc.  For identical interacting sites then, we can distinguish between the 
phenomenological binding constants Ki (defined by eq (18)) and the intrinsic binding constants Ki

o  where 
the effect of degeneracies has been removed.  The relationship between the two binding constants is given 
by: 
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All calculations given below, as well as parameters reported from curve-fitting, are in terms of Ki  values 
but the operator may convert to Ki

o  values, if desired, using eq (19).  Since concentrations of all liganded 
species [MLi] can be easily expressed in terms of the concentration of the non-liganded species, [M], then 
the fraction of total macromolecule having i bound ligands, Fi, is simply 
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Once n and values of fitting parameters K1 through Kn are assigned, then equations (20) - (21) may be 
solved for [X] by numerical methods (the Bisection method is used).  After [X] is known, all Fi may be 
calculated from equation (20) and the heat content after the ith injection is determined from 
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And, as before, 
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Which then leads into the Marquardt minimization routine. 
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 V.  Enzyme/substrate/inhibitor Assay 

Assaying enzymes, inhibitors or substrates by calorimetric activity has the major advantage that it 
works well for any enzyme/substrate/inhibitor system with no prior chemical modification of any 
participants in the reaction.  The rate Rt of the substrate decomposition reaction is directly proportional 
to the power output in the calorimeter cell, i.e., 

 

   
0HV

PRt Δ
=        (24) 

 

where P is the power generated by the reaction, ΔH is the heat of decomposition of the substrate, and 
Vo is the cell volume.  The units of Rt will be moles/l/sec if P is expressed in μcal/sec, ΔH in μcal per 
mole of substrate, and Vo in liters, for example.   

If Michaelis-Menten kinetics are assumed then the experimental values for the rate Rt can be expressed 
as 
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where kcat is the catalytic rate constant for substrate decomposition, KM is the Michaelis constant, [E]tot 
is the total enzyme concentration, and [S]t is the instantaneous concentration of substrate.  The 
equation as written is valid both in the absence or presence of a competitive inhibitor at concentration 
[I] and with inhibition constant KI.  

The use of equation (25) assumes no effects from product inhibition.  This assumption has been 
discussed by Todd and Gomez (Todd, M. J. & Gomez, J. (2001) Analytical Biochemistry 296, 179-
187.) and found to be quantitative in many cases.  In those cases where product inhibition is 
significant, then equation (25) can only be used to express initial rates of reaction prior to 
accumulation of product.  

Todd and Gomez discussed  in some detail the two methods by which assays can be carried out in a 
titration calorimeter, and these are summarized below. 

 

Method 1:  Single injection. Using this approach, the reaction is initiated by injecting enzyme solution 
from the syringe into the sample cell containing substrate solution, or vice versa.  If desired, a competitive 
inhibitor may also be included in one solution or the other.   The reaction is allowed to go to completion in 
the calorimeter cell, and the power P is recorded as a function of time t. 

Integration of the excess power P associated with the reaction enables ΔH to be determined, i.e., 
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where [S]t=0 is the starting substrate concentration.  Knowing ΔH, the substrate concentration can be 
determined as a function of time from the equation: 

 

   0
0][][
HV

Pdt
SS

t

ott Δ
−=
∫

=       (27) 

 

After obtaining the time-dependent rate from equation (24), then these data can be equated to the Michaelis 
expression in equation (25) to provide the final equation to be fit by non-linear least squares. In the absence 
of inhibitor, kcat and KM are used as variable parameters during iterative fitting.  In the presence of inhibitor 
I, it is best to enter previously determined values of kcat and KM and use KI as the only variable fitting 
parameter.  

 

Method 2: Multiple injections.  In this method, multiple injections of substrate solution from the 
syringe are made into the reaction cell containing enzyme solution (with or without inhibitor).  After each 
injection, a sufficient time is allowed for the instrument to equilibrate at the new power level resulting from 
the increased substrate concentration.  Measurements are carried out quickly enough however so that little 
hydrolysis of substrate takes place relative to the total substrate contained in the cell.  That is, [S]t is 
calculated directly from the total added substrate assuming no significant hydrolysis. 

Equations (24)-(25) are still valid for Method 2, except that Rt and [S]t now correspond to discrete values 
of the rate and substrate concentration after each injection, rather than time-dependent values.  To 
determine ΔH from equation (26), it is necessary to carry out another single-injection experiment where 
hydrolysis is allowed to go to completion.  Having done this, then discrete values of Rt at different [S]t are 
calculated, so that equation (25) can then be fit to obtain best values of kcat and KM (in the absence of 
inhibitor).  In the presence of a competitive inhibitor, data are also fit to equation (25) but using kcat and KM 
as fixed (results obtained from previous experiment with no inhibitor present) and treating KI as the only 
fitting parameter. 

VI.  Dimer Dissociation Model 

A protein molecule P may associate at high concentrations to form a dimer.   The dilution of this 
concentrated protein solution by injection into the calorimeter cell containing buffer can then result in some 
heat effects from dissociation  
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where (P) and (P2) are the concentrations of monomer and dimer and where ΔHdisc is the heat of 
dissociation of the dimer.  It is assumed in this model that the stoichiometry is well-defined, i.e.,  no 
aggregates with stoichiometry higher than 2 are present. By measuring heats for a series of injections it is 
then possible, using curve-fitting, to determine the dissociation constant K, and heat of dissociation. 
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The equivalent monomer concentration after the ith injection, Ci, is the sum of the actual monomer 
concentration (P)i plus 2 times the aggregate concentration (P2)i.  Using the expression for the dimer 
dissociation constant to obtain (P)i in terms of (P2)i leads to the equation 
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A similar expression applies to the solution in the syringe of fixed concentration Csyr 
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Since Csyr is known and Ci can be determined from Csyr knowing injection volumes, then (P2)syr and (P2)i 
can be determined from equations (28)-(29) if K is assigned. 

 

The heat released qi when the ith injection of volume dVi is made into a fixed-volume (Vo) cell will be 

 

  ( ) ( ) ( )[ ] ⎥⎦
⎤

⎢⎣
⎡ +−Δ−Δ= − 201222

i
iidiscisyrdisci

dV
VPPHdVPHq    (30) 

 

The first term in equation (30) is the heat content of the aggregate contained in the injection volume prior to 
injection while the second term is the net heat content due to the difference in aggregate present in the cell 

before and after the injection.  The ⎥⎦
⎤

⎢⎣
⎡ +

20
idV

V factor in the final term is an effective volume which takes 

into account the displacement which occurs in a total-fill cell (see Appendix, section I).  

 

Assuming experimental parameters Vo, dVi , and Csyr are known, equations (28)-(30) are simultaneous 
equations which can be solved for qi whenever values are assigned to K and ΔHdisc.  Only the latter two 
parameters are varied during iterative fitting. 

VII.  Competitive Binding Model 

Using conventional ITC methods, binding constants from 103 M–1 to 108 M –1 can be measured most 
accurately.  When binding constants significantly exceed 108 M –1, instrument sensitivity becomes 
challenged as concentrations are lowered to the point where quantitative measurements of the binding 
constant would be possible. On the other hand, binding constants substantially in excess of 108 M –1 can be 
measured quantitatively if such strong-binding ligands are studied in competition with a second ligand 
which binds competitively but more weakly to the same binding site. 
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Competitive binding studies are carried out using the strong-binding ligand A as the injectant, with the 
solution in the cell containing the second competitive ligand B as well as the binding protein P (or other 
target molecule). This system then has two equilibria which are displaced with each injection, i.e.,  
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 The value of KB and ΔHB for the competing ligand are first measured in a conventional ITC experiment, 
and these parameter values are entered as known parameters when determining KA from results of the 
competition experiment. For the competition experiment, the total concentration of competing ligand, [B]tot, 
should be selected such that  
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where “KA” is the estimated value of KA.   

 

The detailed equations used in the fitting model for competitive binding are found in a paper by Sigurskjold 
(Sigurskjold, B. W. (2000)  Analytical Biochemistry 277, 260-266.).  MicroCal would like to thank Dr. 
Sigurskjold for providing this fitting routine. 

 

VIII.  Single Injection Method 

 

Creating New Worksheet.  The raw data (after time constant correction, Fourier filtering, baseline 
subtraction, and eliminating inappropriate data) are used to form a new worksheet which is modeled after 
the existing worksheet used with multi-injection binding data.   

 
1) Input Parameters.  In addition to the raw data parameters (ΔP (ucal/sec) from the Y axis and time t 

(sec) from the X axis of the corrected raw data, the known parameters are the injection rate R 
(μl/sec, stored in header), total delivery volume Vinj (ul, stored in header), active cell volume Vcell 
(ml), the initial macromole concentration in the cell Mo (mM) before any dilution, the dilution 
factor dM for the macromolecule solution resulting from autosampler loading, the initial ligand 
concentration in the syringe Xo before any dilution, the dilution factor dX for the ligand 
concentration resulting from loading.  The approximate values are 0.95 for dM and 0.91 for dX, and 
the values will be independent of the instrument which is used in the experiment. 

2) Point numbering.  In the existing Origin worksheet for multiple injections, the rows are numbered 
1,2,3, …. according to the injection number. In the worksheet for single injection experiments, the 
numbering corresponds to the data point number.  The data points will be spaced at one for each 
filter period (2 sec). 
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3) DH and time t columns.  The DH column corresponds to the column of the same name in the 
existing Origin ITC worksheet while the time t column is one which doesn’t exist in the existing 
worksheet and must be added.  The DH and time t columns should be filled with the data points 
from the above data set (after TC correction, FT smoothing, control subtraction, and data 
trimming).  DH is the Y axis value ΔP (ucal/sec) and time t (sec) is the corresponding X axis 
value. 

4) INJV column. All entries into this column should be identical and equal to the injection rate R 
(ul/sec) times the filter time (2 sec). 

5) Xt column.  ⎟⎟
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Note:  Indexing for Xt, Mt, and INJV refer to values before the ith injection, while DH, XMt, NDH 
refer to indexing after the ith injection (the new column time t is also indexed after the ith injection).   

 
 


